
=O *

A FLCOW MODEL AND ANALYSIS OF A

ROCKET PAIR IN CLOSE PROXIMIT

HUGH A. THOMPSON AND HENRY F. HRUBECKY

PREPARED FOR

THE ADVANCED SYSTEMS LABORATORY

U. S. ARMY MISSILE COMMAND

REDSTONE ARSENAL, ALABAMA

January 1965



A FLOW MODEL AND ANALYSIS OF A

ROCKET PAIP IN CLOSE PROXIMITY

JANUARY, 1965

HUGH A. THOMP.ON AND HENRY F. HRUBECKY

PREPARED FOR THE

ADVANCED SYSTEMS LABORATORY

U. S. ARMY MISSILE COMMAND

REDSTONE ARSENAL, ALABAMA

BY

DEPATMENT OF MECHANICAL ENGINEERING
TULANE UNIVERSITY

NEW ORLEANS, LOUISIANA

*11



TABLE OF CONTENTS

Page No.

TOPIC INDEX

Abstract. .. ............ . . . . . . . .

Introduction. .. ............. ..... 1

Description of Input Data to Progrzm .. .. .. .. .... 10

Theoretical Discussio .. .. .. .. .. ....... 17

Conclusion. .. ............. ......... 33

Bibliography .. .. .. .. .. .. ... .... . . . 35

FIGURE INDEX

Figure 1. Simplified Rocket Geometry . . . . . . . . 6

Figure 2. Flow Field Dimensions and Geometric4< Configuration of a Pair of Rockets
Simulated in This Field... .. .. .. .... 1

Figure 3. A Regular Mesh Point and Its Surroundings . 1

Figure 4. Determination of the Stream Function
on the Boundary of the Flow Field. .. .... 22

Figure 5. Computation of Aerodynamic Force and
Center of Pressure on the Leading Rocket. . 28

TABLE INDEX

Table i. Summary of Restrictions in Input Data . . . 15



ABSTRACT

In the flight of a pair of rockets or the salvo firing of several

rockets, the trailirg ones may be deflected toward the trajectory of the

leading rocket. The progress that has been made in investigating the

aerodynamic aspects of this problem are presented in this report. Two

areas in the flow field have been isolated as regions in which an aero-

dynamic interaction could occur between rockets. A mathematical model

has been developed which simulates the simpler of these regions: the

perturbation of an inviscid, incompressible flow field by the passage

of the leading rocket and the subsequent flight through this disturbed

flow by the trailing rocket. This model employs a numerical method

known as the method of successive overrelaxations to compute the resul-

tant of the aerodynamic pressure force and the point at which it is

concentrated for both a leading and a trailing rocket. The data that

are required by the model and the problem areas that remain in the

preparation of these data are presented and discussed.

iii
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INTRODUCTION

If a'pair of rockets are placed close together and aimed along

parallel trajectories, it might be expected tLat the points of impact

would be separated, at least on a statistical basis, by a distance equal

to the initial spacing. This is not always the case. When rockets are

fired essentially simultaneously or in closely spaced salvos, the trailing

rockets move toward the flight path of the leading rockets. Apparently

in extreme cases the trailing rocket may even cross the wake of the lead-

The purpose of this study has been to isolate those mechanisms which

would tend to deflect a trailing rocket. Further, having determined the

possible origins of the interference to develop a mathematical model which

could be used to determine rocket spacings or delay times that would assure

rocket flights in pairs or salvos wita accuracies comparable to those

obtainable with single round firings.

This particular problem of decreased accuracy is associated with

j essentially simultaneous firings of groups of two or more rockets located

in close proximity to one another. This association suggests strozzgly that

the deflection of the trailing rocket is due to an aerodynamic interaction.

Such possible sources of inaccuracy as wind gusts during the time of

flight, mal aim and thrust mal alignment would not be confined to the

salvo firing situation, nor preferential in their action toward the

trailing rocket. These factors should on a statistical basis disrupt the

flight of the leading rocket with a frequency comparable to that encountered

with the trailing one. Deformation of the launching platform of the

trailing rocket under the impact of the exhaust of the lead rocket has not
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been pursued as a possible source of inaccu:acy. Although this particular

interaction shows the requisite discrimination for the trailing rocket and

could be a significant factor in salvo firings, it would be totally absent

in essentially simultaneous firings from separate launching platforms. In

this case the deformation effects would be closely equivalent for both

rockets and yet the deflection of the trailing rocket still occurs.

An hypothesis attributing the observed deflection of trailing rockets

to aerodynamic forces seems generally to fit the facts, The perturbing

mechanism is operative at all times and during all firings. The magnitude

of the interacting forces is a function both of the spacing between rockets

and the deviation in time between firings. Finally, there exists a de-

cidedly greater influence on the trailing rocket than on the leading one.

Examination of the flow field shows two major areas in which an

aerodynamic interaction may occur. One is the region (1) of turbulent

decay of the jet exhausting from the leading rocket. In this region the

potential core of the jet decays by turbulent mixing with the atmosphere

and mean velocities change from the maximum values at jet exhaust to the

free stream vclocity existent in the undisturbed atmosphere at some dis-

tance from the rocket. Large velocity gradients occur in this area and a

rocket trailing in this region would be subjected to substantial arro-

dynamic pressure differences. The direction of the resultant pressure

forces acting on the trailing rocket would be toward the trajectory of

the leading one. In order that this interaction occur, the trailing -rocket

must be located several rocket lengths behind its leader. During either

Numbers in parentheses refer to the bibliography located at the end of
the report,



-3-

simultaneous firings or salve firing a- time intervals of sufficient dura-

tion to allow the turbulence induced by the first rocket's jet wake to

decay away, drift of the trailing rocket which is caused by this interaction

would not ,ccur.

An aerodynamic interaction clearly arises in the disruption of the flow

field by the leading rocket and the subsequent flight of the second rocket

through this-disturbed environment. The region outside the jet wake of

the leading rocket is disturbed by the passage of the body of the rocket.

Fluid is accelerated away from and to the rear of the body. Velocity gra-

dients, although of considerably smaller magnitude than in the case of

the turbulent mixing region of the exhausting jet, are induced in the

vicinity of the leading rocket. The flight of the trailing rocket-in this

second disturbed flow region also results in aerodynamic pressure forces

tending to draw the-twe rockets together. This interaction occurs even

when the distance one rocket lags behind the-other is zero. The disturbance

of the atmosphere which-is created by the'passage of the lead rocket spreads

radially outward from the longitudinal axis of the rocket and the distance

to the outermost extent of this disturbance increases with the distance

traversed from the nose. Due to this widening cone of disrupted flow, the

interacting forces will increase as the trailini, rocket falls progressively

farther behind, The interactions arising in this region are then also

preferential toward the trailing rocket.

In either area, the center of pressure on the trailing rocket, that

is, that point at which the aerodynamic forces may be considered to be con-

centrated, will probably'not coincide with the location of its center of

mass. The overturning moment resulting from such a force distribution
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tends to cause a yawing of the trailing rocket. This tendencytowards a

rotational motion about its center of mass is in addition to the trans-

lational driit toward the trajectory of the leading rocket. Even though

both spin of a portion of the rocket about its longitudinal axis and fins

on the aft sections are employed to minimize deviations from a zero angle

of attack (and assure nose first impact), yaw of the rocket prior to

burnout will bring some component of the thrust to bear as a deflecting

force. If interacting forces maintain a preferred direction of yaw, the

magnitude of the force deflecting the trailing rocket will be greater than

the forces due to aerodynamic loadings alone. One of the objectives of

this study could, then, be restated as the isolation of those mechanisms

which result in a favored orientation in the yaw of the trailing rocket

such that a component of thrust deflects it toward the path of the lead-

ing rocket.

This report summarizes the progress that has been made toward the

development of a mathematical model of the interaction occurring between

two rockets through the simpler of the two mechanisms, the disturbance of

the flow field by the passage of the leading rocket. Physically this

amountv to treatment of the case of essentially simultaneous firings in

which no part of the jet exhaust from the lead rocket impinges upon the

trailing rocket. By a number of simplifications and assumptions, this

case has been brought within-the realm of accessible solution. Indeed,

such may also be feasible in the second region; however, this region is

beset with a number of problems that are not present'in the simpler case.

The turbulent interchange ol momentum and heat-combined with the mixing

that occurs between the products of combustion and the atmosphere
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FIGURE 1. SIMPLIFIED ROCKET GEOMETRY

boundary of the exhausting jet is greatly simplified. The mixing pro-

cesses through which the products of combustion intermingle with the

atmospher' have been completely eliminated by visualizing the jet as a

solid body. In, cross section the boundary between the interior of the

jet and the atmosphere consists of a circular segment attached to the

rear of the body of the rocket and extending rearward until its tangent

is parallel with the direction of flow. Beyond this point the remaining

portion of the wake is simulated by a cylinder extending to infinity.

The conical tip was used in preference to a more realistic ogive

because of its simpler mathematical form. If the hypotheses advanced

earlier are verified an ogive-type profile may be incorporated as a re-

finement on the present work.

Little information is available on the shape of the boundary of

a jet exhausting into a flowing stream. The investigations of Love,

Grigsby, Lee and Woodling (2) have shown- that the boundary of an axi-

symmetric free jet exhausting into still air may for its initial length

be represented by an a5c of a circle. Curves are presented which show
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the radius of the arc and the maximum diameter of the jet as functions

of the pressure ratio and divergence angle of the discharging nozzle.

Although the free stream velocities associated with the flight of pairs

of rockets are not zero, deviations from the situation where a jet

exhausts into still air should not be significant, at least, insofar as

this problem is concerned. Until more directly applicable data become

available, the material of Love, et al, is recnmended for use in deter-

V mination of the initial curvature of the exhausting jet. That is, it is

N recomended that determinatiou of the radius of the circular arc be made

independent of the free stream velocity. The correlations presented by

Love, et al, were developed from numerous solutions employing the method

of characteristics. As this method does not account for the turbulent

decay of the potential core of the jet, the results cannot be applied

much beyond the point where the boundary of the jet turns parallel with

the free stream flow; that is, the point at which the jet reaches its

maximum diameter- It is at this point that the turbulent decay of the

exhausting jet comnences. This is the region that has been approximated

by a cylinder extending to infinity. It is the least realistic of the

areas postulated in the simulation of the rocket and its jet. Since this

phase of the investigation is concerned primarily with disturbances which

occur in proximity to the body of the rocket, the simulated wake is not

Iconsidered a gross approximation unless the distance of trail of one

rocket behind the other is great.

In the initial stages of a firing, where rocket velocities are less

*than 300 fps, the region outside the wake may be considered both inviscid

and incompressible These conditions when combined with the assumption

WMI
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of steady state require that the streaa function in this region must

satisfy Laplace's equation. That portion of total time of flight of a

rocket which is spent in the incompreszible flow region comprises a dis-

proportionately large percentage of the total. Further, the magnitudes

J
of the forces deflecting the trailing rocket are very small when compared

to the thrust and their action mst be well established in the incom-

pressible flow portion of the flight if a significant deviation is to

occur. For these reasons the initial investigations were restricted to -/

inco pressible flows.

Under the conditions outlined above, the flow is called potential

(3) and the techniques of conformal mapping are, in theory, applicable

to describe the flow. However, our attempts to utilize the complex

plane to obtain the potential flow field surrounding two rockets were 14

unsuccessful. The Schwartz-Christoffel transformation will not admit

the curved portion of the boundary of the exhausting Jet. The method

of Levi-Civita vii admit curved boundaries, but there does not appear

to be a way to map the flow field surrounding two rockets into a single

region in the complex plane.

When attempts to obtain an analytical solution were not successful,

a comp,.ter program employing numerical methods was developed to calculate

the interacting forces and their centers of pressure. Of the various

numerical techniques that were considered, the method of successive over-

relaxations wa3 selected as most promising in terms of both adaptability

and probable minimum convergence time. This technique was applied to a

five point finite difference analogue to Laplace's equation in which the

stream function was the independent variable. The domain of definition
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of this variable consists of a r2ctangular field enclosing two simulated

rockets. By means of the input data the size of the rockets, the dis-

tance between them and the distance of trail of one behind the other may

be varied and the inZtuence of these variables on the force of interaction

examined. In addition to !nput data describing the geometric disposition

of the rockets, the values of tho stream function on the boundaries of

the rectangle must also be specified and by changing these bounding

values various rocket velocities may be examined.

This program has been compiled and checked by means of two example

problems. The influence of many factors must be established before the

data from this program may be considered reliable. However, on the basis

of the fragmentary information from the two example problems it does appear

that a sizable force of interaction is present and the hypothesized mech-

anism of the interactLoa may ba valid.

I
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i
DESCRIPTION OF INPUT DATA TO PROGRM

Figure 2 shows a sketch of the rectangular flow field superimposed

upon two rockers. Those quantities that specify the georetry are shown

on the fig:re as dimensions. These quantities are input data to the pro-

gram and may be varied, within certain broad limits, to determine their

Influence upon the aerodynamic interaction. The following tabulation

presents a complete list of the data that must be provided in the

preparation of a problem for machine computation. As it is not feasible

to provide logic within the program that is capable of handling all

possible configurations, certain restrictions must be piaced on the

variable5 and some combinations of variables. These restrictions are

noted in the description of each variable and summarized in a subse-

quent tal.le. The variable H which is frequently referred Eo in the

following tabulation is the value of the mesh size; that is, the dis--

tpace between adjacent nodal points in the relaxation network used in

the method of successive overrelaxations. All distances in the program

are measured in feet. The listing of the variables that specify the

geometry of the rocket is as follows:

.M1 - The altitude of the cone representing the tip of the rocket.

XL2 - The length of the cylindrical portion of the rocket. The
value of XL2/H must be an integer which is greater than or
equal to 3.

RI - The radius of the cylindrical portion of the body of the 3

rocket. The value of XL2/H must not be an integer.

DELTA - The angle measured in radians that the tangent to the
circular portion of the boundary of the exhausting jet
makes with the horizontal at the point where the boundary
joins the cylindrical portion of the wake.

RW - The radius of the cylindrical portion of the solid body
that simulates the boundary of the exhausting jet. The
ratio of RW/H must not be an integer.
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FIGURE 2. FLOW FIELD DIMENSIONS AND GEOMETRIC CONFIGURATION
OF A PAIR OF ROCKETS SIMULATED IN THIS FIELD

The variables that specify the dimensions of the flow field and

position the rockets in that field are:

IMAX - An integer determining the length of the flow field that

lies parallel to the direction of flight. The dimension

A indicated in the figure equals the product of H and

I14AX minus one. IMAX must be less than or equal to 34.

B - The distance between the longitudinal center line of the

leading rocket and that edge of the flo', field which lies
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nearest to and parallel with its centerline. The value

of B/H must be an integer which is greater than or equal

to the value of 3.0 + (RW/H).

D - The distance between the longitudinal center line of the

trailing rocket and that edge of the flow field which

lies nearest to and parallel with the centerline. The

value of D/H must be an integer which is greater than or

equal to the value of 3.0 + (RW/H).

TiJMAX -An~ integer determining the width of the flow field, the

dimension that lies perpendicular to the direction of

flight. The dimension C indicated in the figure is de- 7

fined by the equation, C = H-(JMAX - 1) - B - D. The

value of JMAX must be an integer which is less than 28.

E - The distance between the upstream edge of the flow field

and the vertex of the nose cone of the leading rocket.

The value of 7/H musi, not be an integer and must exceed

the value 2 . The value of (E + XL1)/H must, however,

be an integer.

F - The distance between the upstream edge of the flow field

and the vertex of the nose cone of the leading rocket.

The value of F/H must not be an integer and must exceed

the value 2. The value of (F + XLI)/H must, however, be

an integer.

In most iterative numerical techniques, a network is superimposed

over the flow field and the finite difference approximations to the con-

trolling equations are repeatedly applied until they are closely satisfied

101
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at every point of intersection in the mesh. The nodal points employed

in the square network of this program are identified by means of a matrix-

type numlering system in which each point is assigned two integers I and

J . In locating a particular point I, 3, the value of I is the number

of the column of intersecting mesh points in which it is found; the col-

umns are numbered sequentially starting with the upstream boundary of the

flow field as the first. The value of J is the number of the row in

which the point is located. The rows are numbered sequentially downward

with the upper horizontal boundary taken as the first. The value of the

stream function at the nodal point I, J is given the symbol X(IJ)

fValues of the stream function at each of the ncdal points lying on the
boundary of the flow field must be specified in the input data. By

specifying the bounding values of the stream function, the velocity dis-

tribution at the boundary of the flow field is fixed and the boundary

conditions for the problem are cast. Those data that must be specified

in the input are:

X(I19), X(1,2), .. o , X(l, JMAX) - These JMAX values of the stream

function at the nodal points on the upstream boundary de-

termine the free stream conditions. The values of the

stream function on the upper horizontal boundary are

constant and equal to X(l,l) while those on the lower

Lhorizontal boundary are also constant, but equal to

X(l, JMAX).

X(1MAX, 1), X(IMAX, 2), ... , X(IMAX, JMAX) - These are the stream

function values on the downstream boundary to the flow field.

As w'il be discussed later, the specification of these
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values is one of the most difficult problems associated

with this program. It will occur that some of the nodal

points on this boundary lie inside the solid boundary

which represents the exhausting jet. Values of the stream

function specified at these -oincs are never used in the

program. Although thei value is unimportant, there must

be JMAX values specified so that some arbitrary v3lue must I
be assigned at these points.

XB1 - The value of the stream function at every point on the

bcundary of the leading rocket.

XB2 - The value of the stream function at every point on the

boundary of the trailing rocket. i

RHOI - The density in slugs per cubic foot of the undisturbed

fluid through which the rockets pass.

Certain quantities must be specified in the input information which

are associated solely with the computational method. These data are: I
H - The distance between adjacent nodal points in the relaxation

network.

TOL - The value of this variable when multiplied by one hundred

is approximately thi maximum percentage error that is I
acceptable in the computation of the stream function.

W - This term is known as the convergence factor. It is used

in the method of successive overrelaxations to minimize

the number of times the computation must be performed.

The convergence factor must be optimized with respect to
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the dimensions of the flow field. When the input value is

made zero, the program will approximate the optimum value

according to the relation:

nH wHl
ui - 0.5 [cos (-)+ cos (1)

2
w - .o + { ==; (2)

1.0 + /1.0- 2

If a nonzero value of W is read into the problem, then the

internal computation of W will be omitted and the input

value used instead.

TABLE I. SUMMARY OF RESTRICTIONS ON INPUT DATA

The following conditions must be satisfied by the input data:

For the individual variables

XLI/H # n

XL2/H = n Z 3

RI/H # n

RW/H # n

IMAX = n _ 34

B/H = n a 3.0 + (RW/H)

D/H = n a 3.0 + (RW/H)

JMAX = n - 28

2 E/H # n

2 ' F/H # n

For the following combination of variables

B/H - RW/H > 3

(E + XLl)/H = n

(F + XLl)/H = n

, The symbol n as used in this tabulation denotes any positive integer.

.. ,., - =._a
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The data which are normally obtained from this program are the

resultant force and the center of pressure of that force on both the

leading and the trailing rockets. The center of pressure is located

by specifying the longitudinal distance between the vertex of the cone

representing the tip of the rocket and that point on the body of the

rocket at which the resultant force may be considered to be concen-

trated. The terminal values of the stream function at all nodal points

in the flow field may also be obtained by properly positioning a sense

switch on the computer console. Although the distribution of aero-

dynamic pressure forces on the body of the rocket is computed in

determining the resultant force, it is not accessible as output data.

4
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THEORETICAL DISCUSSION

Under the assumed conditions- of inviscld and incompressible flow,

the components of the velocity of the flow and the pressure distributions

on the rockets may be derived from the spatial variation of the stream

function. The spatial variation of the stream function is primarily con-

trolled by the requirement that Laplace's equation must be satisfied at

every point in the flow field; that is,

V2  = o . (3)

Those lines in the flow field along which the stream function has a con-

stant value are known as streamlines. The physical significance of the

stream function may be considcired to be that the volume rate of flow

which passes between streamlines is constant.

Where complexities in the flow field prohibit the determination of

analytical solutions to Eq. 3, numerical methods may be employed 1-o ob-

tain solutions to specific problems. In these numerical methods the

requirement that the controlling equation be satisfied at every point

in the flow field is replaced by tbe less striag-,t one that a finite

difference approximation to the contaolling equation must be satisfied

only at discrete points in the flow field. The location of these points

is determined by superimposing a rectangular mesh or network of lines

upon the flow field and taking the intersection of these lines as the

discrete or nodal points at which the finite difference equations are

applied.

In the present work a square grid has been selected and used with

a five point finite difference approximation to Laplace's equation. A

$ -
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sketch of a regular mesh point say, for example, point 0 is shown in

Figure 3. Such a point is termed regular because all the lines radiating

I I
H (Typical)

3 10 11

1 14 1

FIGURE 3. A REGULAR MESH POINT AND ITS SURROUNDINGS

from it terminate on points located a distance H away. In this case

the approximation to Laplace's equation may be shown to be,

= I + +* +  4)  (4)0 4 1 2 3 4P

The subscripts rorrespond to those nodal points from which the valu-s of

the stream function are taken. Although the equations for the irregular

points that lie adjacent to solid bodies will be somewhat complicated by

one or more of the arms havinrg lengths less than H , the value of the

stream function at a point remains a function of the values of the

stream function which bound the point. Equations similar to Eq. (4) may

be written for every nodal point in the flow field. The simultaneous

so.ution of all of these nodal point equations yields the spatial varia-

tion of the stream function in the flow field.
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From the many methods available for the computation of the solutlon

values of the stream function at the nodal points, an iterative type,

point by point technique has been selected. In this method, initial

values of the stream function are arbitrarily assigned to all the nodal

points that lie inside the flow field. Computation then proceeds, row

after row in succession, until values at each nodal point in the networK

have been recalculated. This procedure is repeated until successive

iterations through the complete network result in fractional changes in

the stream function at every nodal point that are less than the value

of TOL specified in the input data. Upon the completion of two such

iterations, the values at the nodal points are considered to be close

enough to the values that satisfy the simultaneous finite difference

equations and the spatial variation of the stream function is

established.

~th
During the n iteration through the flow field, the value of the

stream function at a particular point depends upon values of the stream

function at surrounding points that are improved and unimproved; that is,

the values are the result of calculations performed during both the

iuretnth n-th,
current, n , and preceding, n-l , iterations. If superscripts in

parentheses are used to indicate the number of the iteration in which

the value of the stream function was calculated, then, considering

point 0 in Fig. 3, the technique of point by point computation is

illustrated by the following equation:

Wn 4 " + 2(n) + 3n) + ,(n-l) (5)

The iterative technique indicated by Eq. (5) is known as the Gauss-Seidel

method and has been used frequently and successfully. However, the
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n-aber of iteratiGns required to bring the changes in the stream function

within tolerable limits may be substantially reduced by the incorporation

of a convergence or relaxation factor. When such a factor is added, the

technique is known as the method of successive overrelaxations (4). The

equation for the stream function at point 0 ar computed by the method

th
of successive overrelaxations is, during the n iteration:

.(n .1.r (n-1) .(n) .(n-1) (0-1)
.(n W 4-0 + TP + ]} - (W-1)0 (6)

0t4 1 3 106

It may be observed that when the value of W is taktn as one, the

method of successive overrelaxarions reduces to the Gauss-Seidel method.

However, when the optimum value of W is used, it has been shown (4)

that the method of successive overrelaxations converges approximately

2/lH times as rapidly as the Gauss-Seidel method and it was for this

reason that the method 3E successive overrelaxations was selected. The

optimum value of W for a rectangular flow field depends on the number

of mesh points comprising the length and width of the fie-i. Equations

for the estimation of this value are given in the section of this report

that describes the input data to the program. Although the flow field

is indeed rectangular, it is also pier:ed in two places by the rockets

so that the equations for optimum values of W are not exact. The de-

gree of approximation which is involved may be established by examining

the variation of the number of iterations required to complete a parti-

cular problem with the value of W. A guideline that may be useful in

carrying out this investigation is that the number of iterations increases

much more rapidly when W is less than its optimum value than when W

is overestimated.
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The way in which tr!e velocity depends upon the spatial variation of

the stream function may, perhaps, best be illustrated by a discussion of

the very important problems associated with the boundary conditions. The

specification of the values of the stream function on the boundary of the

flow field and the equation controlling the behavior of the stream func-

tion inside the region completely determine the solution to a prcblem of

this type. Aithough the mechanics of determining the implied solution may

be tedious, demanding, and, in some cases, impossible, the solution is

nonetheless fixed by a statement of the boundary conditions and the con-

trolling equation. It is for this reason that the boundary conditions are

considered to be so important. In the present case the values of the

stream function on the upstream boundary and the boundaries lying parallel

to the direction of flow may be found without difficulty; however, the

velocity di.tribution or the variation of the stream function on the down-

stream boundary cannot be specified with any degree of confidence. It does

appear that the influence of the conditions at the rear boundary on the

forces of interaction may be minimized by placing the rear boundary a

considerable distance downstream from the rockets, but this must be checked

by computing several cases with the program.

On the upstream boundary the input values of the stream function are

easily determined, provided the boundary is located sufficiently far from

the nose of the rocket that the flow field may be assumed to be undisturbed.

If u is taken to be the component of the velocity in the x direction

and v as the velocity component in the y direation, both are in general

functions of position,

u = u(x,y' , (7)

v = v(x,y). (8)

-- --=- - --.- -- ~--
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They are related to the stream function through the equations,

U ay (9)

and

V~(10)

A diagram indicating a coordinate system and the indexing technique

employed in the program is presented in Figure 4.

12 34x

3 JBRW
4

5

C-2RW

D-RW

J=JTERI I
FIGURE 4. DETERMINATION OF THE STREAM FUNCTION

ON THE BOUNDARY OF THE FLOW FIELD
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In the far-upstream region the velocity is constant and equal to the

free stream velocity. Along the upstream boundary then the components of

the velocity are:

u(O, y) - U , the free stream velocity, (11)

and

v(O, y) 0 . (12)

At any point in the flow field, the stream function is related to the com-

ponents of the velocity through the partial differential equation,

dY i-v(x,y)dx - u(x,y)dy. (13)

integrating this equation along the line forming a part of the upstream

boundary and passing between the origin and a point y = -Y from the

origin yields an expression for the variation of the stream function

along this boundary,

T(OY) = T(0,0) + UY (14)

The value of T(0,0) in the above equation is completely arbitrary. This

equation may now be translated into the finite difference terminology used

in the program. The distance Y to the nodal point located on the column

I = 1 and some row J is given by

Y = H(J - 1) . (15)

Where values of the stream function are denoted X(I,J) and the values

of I and J inside the parentheses denote the nodal point with which

the value of the stream function is associated, Eq. (14) may be rewritten:

X(i,J) = X(l,l) + (J-I)HU • (16)

The arbitrary value T(O.0) in Eq. (14) is now identified as X(l,l) in

Eq. (16).
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Values of the stream function on the boundaries parallel to the

flow direction are also implied by the above equation. The value

specified in the input data for that point on the upstream boundary

which is common to both the upstream and a longitudinal boundary is

taken by the program as the value of the stream function at every

nodal point on that longitudinal boundary. In equation form,

X(l,1) - X(2,1) = X(3,1) = ... = X(ITER, 1) (17)

and

X(1,JTER) = X(2,JTER) = X(3,JTER) ... X(ITER,JTER) (18)

This method for the specification of the stream function on the

longitudinal boundaries assumes the boundaries are streamlines and

that nc fluid passes across them. Such an assumption is justified

when the longitudinal boundaries are placed at such a far distance

from the rockets that the fluid accelerated normal to the direction

of flight of the rockets exits from the flow field through the rear

boundary without reaching the longitudinal boundary.

The values of the stream function that are specified on the

upstream boundary are used by the program in yet another way. The

initial values of the stream function at points inside the flow field

are obtained by setting the stream function at all interior points on

a particular row equal to the value specified in the input data at the

point of intersection of that row and the upstream boundary. For row

number J the initially assumed values are given by,

X(l,J) = X(2,J) = X(3,J) = ... = X(ITER-I,J) (19)

where J equals neither JTER nor one. Although these values are

arbitrary in that they do not affect the final answer, the number of
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iterations required for the program to converge to the final answer way

be significantly affected. That is, the more nearly the initially

assumed values of the stream function correspond to their final distri-

bution the fewer will be the number of iterations that are required. As
p

experience is gained in the problem, it may appear that improvements can

be made in the method for assuming the initial distribution in the stream

function. The incorporation of suca animprovement should result in sub-

stantial savings in computer time.

Ailong the downstream boundary the assumption of a uniform velocity

is obviously untenable and experimental data are not available on velocity

distributions in the vicinity of two exhausting jets in a uniform flow

stream. Although the program developed here can shed little light upon

the velocity distributions that actually occur in such geometries, it can

be used to assess, insofar as the interacting forces are concerned, the

relative importance of this gap in our knowledge. By examining the

effect of several velocity distributions placed at various distances

downstream from the rockets, the extent of the influence of this variable

may be established. It often happens in this kind of problem that the

influence of the conditions -iystent on a particular boundary may be

minimized by moving the boundary a sufficient distance away from the

point of interest. However, in the event the variation of the stream

function on the downstream boundary is shown to be a significant variable

and one whose influence cannot be reduced below a tolerable level, the

program should be supplemented with experimental investigations.

Several criteria which the velocity distribution on the rear boundary

must fulfill may be derived from theoretical considerations. Returning

- ,-.* - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _-



-26-

to the controlling partial differential equation, Eq. (13), and per-

forming another line integration along x = A from the point y = 0

downward a distance Y , the relation between the stream function

and the velocity distribution is found to be:

y=I-Y
r

T(A,-Y) - f(A,0) = - u(A,y)dy , (20)

where the distance Y is less than B-RW . Where Y equals B-RW ,

Eq. (20) becomes, in terms of the relaxation variables,

-B+RW

ty XB1 = X(l,l) - J u(A,y)dy . (21)

0

The variable XB1 is the value of the stream function at every point

on the boundary of the leading rocket and, also, it is the value of

the streamline that intersects the apex of the nose cone of the

leading rocket. A similar relation may be derived for the portion

of the downstream boundary that liLs between the two rockets:

y-Y

'(A,-Y) - (A,-B-RW) =- u(A,y)dy , (22)

yf-B-R-%

which, translating to relaxation variables and lettiug Y go to

B + C - RW , yields,

y=-B-C+RW

XB2 - XBI = - J u(A,y)dy . (23)
j

y=-B-RW

The variable XB2 plays the same role in the case of the trailing

y rocket as does XBI for the leading rocket. Finally, for the

-ma



-27-

portion of the downstream boundary that remains, we have:

y=-Y
r

#(A,-Y) - Y(A,-B-C-RW) - u(A,y)dy (24)

y -B-C-RW

and over the entire length of that portion,

y= -B-C-D

X(l,JTER) - XB2 f - J u(A,y)dy . (25)

y= -B-C-RW

These equations reiating the velocity distribution, u(A,y), to the

stream function along the downstream boundary should be of some

assistance in determining the importance of the flow conditions

specified at the downstream boundary.

The Eqr. (21), (23) and (25) do not completely define the values

of XBI and XB2 These variables are also subject to speculation.

When the two rockets fly with zero lag of one behind the other, the

values of XBI and XB2 should be equal to the values of the stream

function that were specified on the upstream boundary at the inter-

section of the upstream boundary and the longitudinal axes of the

respective rockets. Physically, this means that flows initially

directed between the two rockets continue that orientation without

deflection. When one rocket trails the other the value to be assigned

to XB2 is subject to question. The leading rocket deflects some

of the flow so that a part of the fluid tLat was initially directed

to pass between the two rockets will pass between the trailing rocket

and the boundary of the flow field nearest to it. Data are not

available on the fraction of the flow that is deflected and the present

computation will not yield any such information. However, the program
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may, again, be employed to establish the relative impoztance of this

variable and provide an estimation of the magnitude of its influence

on the interacting forces.

Once the spatial variation of the stream function has been es-

tablished to within a satisfactory degree of accuracy, the relaxation

phase of the program is complete. In the next step the net aerodynamic

force and center of pressure are computed for both rockets. A sketch

of the lead rocket is shown in Figure 5; this figure will be used to

illustrate the derivation of the equations employed in the final com-

putational phase of the program.

SH Upper Surface(Denoted II.)

I=Kl+l I=KI+2 I=l i=1l+12

I I " I- t
J=Jl-n I

J=Jl _____ __ __

J=J-+n-"-

"--XL1 [ 12 Lower Surface

(Denoted I.)

4

FIGURE 5. COMPUTATION OF AERODYNAMIC FORCE AND
CENTER OF PRESSURE ON THE LEADING ROCKET

i - ,I, , i l- l - .. . ... .. '| ' ! "l[ ' lI ....... 1 • ... -I ......i r i / / i~ .... / ! T | I l ll l
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Those variables that are to be evaluated at the upper surface

will be denoted by the subscript II while those that apply to the lower

surface will be subscripted I . Several of the more important mesh lines

are dashed in on the figure and given names for ready reference. The

value of the variable n is an integer such that the mesh lines Jl + n

and J1 - n lie closest to and parallel with the cylindrical portion of

the rocket.I
Taking the upward direction as positive, the net force of this

rocket may be computed by evaluating the following integrals,

x-XLl x-XL2+XLI

F- J (pI - p1 )dx+J (p1 - p 1 9dX , (26)

xO x-XL1

where p stands for the pressure in the fluid. The pressure variable

may be eliminated from Eq. (26) by the use of Bernoulli's equation,

Sp q2 p.2 U 2

w+ - hD+ (27)P. 2 pO 2

where P= is the density of the atmosphere and q is the magnitude of

the velocity vector. Substitution yields,

x=XLl x=XLI+XL2

F =-t- (qll - ql)dx + (ql- q )dx} . (28)

x=O x=XLl

The magnitude of the velocity vector is equal to the sum of the squares

of the velocity components which are in turn related to the spatial

derivatives of the stream function:

+V2(P)(2 2 (29)q ~a ax)+ =
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Substituting these values into the integral for F and realizing that
a* I a*II

=x - - 0 on the boundaries of the rocket between x - XL1 and
ax x

x = ALl+XL2, yields:

x-XLl x=XL1+XL2
Poo f 2 a 2 3*12 p 2 a

FU2 {-~J " +) - - - *1) - x.) dx +TI y ay ) Jdx. (30)

x-0 x-XLl

In writing the finite difference approximation to these integrals it will

be simpler if the following additional definitions are introduced:

= Jl + n, (31)

J1 - n. (32)

As an example consider the evaluation of the last integral in Eq. (30).

The partial derivatves may be approximated along any mesh column between

II and 11+12 by the following two point analogies:

I XBI-X(I,) (33)

.4y SH

and

" I, X(IJ)-XBI (34)

y SH "

As is conventional in this type c~mputation, the integration is replaced

by a summation. The approximation to the integral may be shown to be

equivalent to,

x=XLI+XL2
fI BII 2 + (1* 2 H1=11+12]2- 1xXLS-) - 2I (I)[X(I,J)-XB2 - [XBl-X(I,J)]2} (35)

x-XLl aTY(SH) 2I-Il

0.5 @ I-Il

where, G(1) 1.5 @ IIi+I, 11+2, ... , 11+12-1

0.5 @ 1=11+12.

_--M-
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The finite difference approximation to the remaining integral in Eq. (30)

is somewhat more complicated because the surface is not horizontal.

Breaking it into the sum of two integrals,

x=XL 1

jl( 0 1 2 
-11-T 2@ 

'*2 _ a

(36)
xXL: xXL1

Jf{( II)2 _ a1 2 r 1 I 2

-ay -dx + J - - dx.
x-O Xffi

Then the finite difference approximation to the first integral on the

right hand side of Eq. (36) is:

xjaXLI 2 I=II - 2 -2

_) { y, - ( YI) }dx - I [( {I(X ,J)-XBl] - [ -x(_j -3
By a ARM.R12 (37)-0 I=KI+2 [H- (J-J1) ['

where,

0.5 + ARM @ I = KI+2

= H @ K1+3 _< I 5 I1-i
0.5H @ I - Ii and 11+2 _< Il

XLI @ I - Ii and 11+2 !l

and ARM = XL1-H. (Il-I).

For the second integral on the right hand side of Eq. (36),

x-XLI Jn-I.

J( 2+ 2- Pi 1  [XBlX(IjIj)I [XBi1-X(,J1+J) 1

x=0 ax J=1 (SH)2

where, SH = H.(II-I) - {LI-H.(J)XL1 (38)RI'38
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Evaluation of these integrals yields the approximate value of the net

upward force acting on the leading rocket. The center of pressure is

calculated in a parallel computation which is the evaluation of,

x-XLI x-XLI+XL2

X { F (Pi- P1I)x dx + j (p I- PH )x dxj. (39)

x-O x-XLl

A similar set of equations has been developed for the net upward force

and center of pressure on the trailing rocket.
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CONCLUSION

A computer program %as ben developed which will compute the mutual

interaction between a psir of rockets fired essentially simultaneously.

Preliminary computations performed with this program indicate a sizable

aerodynamic interaction does occur and could well explain the observed

behavior of rockets in simultaneous or salvo firings.

As has been indicated in the preceding discussion, the influence of

a number of factors must be determined before the computation method can

be considered a reliable one. Such variables as the velocity distribu-

tion on the downstream boundary, the value of the streamline intercepting

the apex of the nose cone of the trailing rocket, the distance the

boundary must be placed away from the rockets in order that the flow

may be considered to be undisturbed, are the major problems that require

attention. The results of an investigation of these variables may indi-

cate that the program will satisfactorily predict the interaction between

rockets in the velocity range for which it is designed, but it should be

realized that the possibility exists that experimental work may be

required.

In addition to the theoretical considerations there are others that

have to do with optimizing the computing time. The value of H and TOL

must be sufficiently small that they affect neither the force nor the

center of pressure on the rockets, but they must also be as large as is

practical in order to minimize running time and remain within memory

capacity. The optimum values of these variables can be established only

by computation with the program.
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When these investigations have been completed, the influence of

such variables as rocket velocity, spacing between rockets, and distance

of lag of one behind the other on the force of interaction may be
i

investigated.
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